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1 Description

1.1 General

For shorter-term models, awareness of costs and market impact becomes increasingly important.
One approach to handling this is to let the signal produced by some prediction model be as
fast as it needs to be, and then let a market impact model decide upon the optimal trading
trajectory. Inserting one’s favorite market impact model and formulating this as a continuous-
time stochastic optimal control problem, the optimal solution can be obtained through applying
e.g. Euler-Lagrange or Hamilton—Jacobi—-Bellman. In the general case, a numerical solution
can be obtained using some method not suffering from the curse of dimensionality. We follow
the presentation in Chapter 11 of Paleologo (2025), which gives an overview of market impact
models used alongside portfolio optimization.

1.2 Mathematical details

Let V; be the wealth at time ¢, following the dynamics
dVy = ufxpdt + xf oy AW} — c(iy) dt.

Here, z; € R? is the position, th € R4 is a standard Brownian motion, Wy € R4 is the signal
or mean of the returns, o, € R%*4 is the square root of the covariance of the returns, and c(;)
is the instantaneous cost plus market impact at time ¢. For example, Paleologo (2025) defines
this term as

c(xy) = T:'Et K t Ts — s)ds,
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decomposing as a transaction cost term plus a market impact term. Common choices for f
and G include f(i;) oc |@¢|%,G(t) = §(t) (Almgren and Chriss 2000, Almgren et al. 2005),
f(iy) o< iy, G(t) = e (Obizhaeva and Wang 2013), and f(&,) oc sgniy|i¢|'/?, G(t) =
1/+/t (Gatheral 2016). A general setup and solution for certain types of propagators G is dis-
cussed in Jaber and Neuman (2022). u; can be the signal obtained from some regression model
trading too fast to be practically tradable, and o0/ can be obtained from some standard covari-
ance estimate. In the simplest case, p; is deterministic, but it can also follow some dynamics to
model some kind of alpha decay, e.g. an Ornstein—Uhlenbeck process

duy = —apy dt + w thQ.



Like Almgren and Chriss (2000) and others, we may optimize some mean—variance objec-
tive E Vpr — (A/2) Var Vr for some terminal time 7, which may be finite or infinite (Paleologo
2025). A basic example is when ; is deterministic and ¢(4;) = 0—in that case we are solving
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where ¥y, = o0, which just amounts to z; oc ;' 1, as in Markowitz optimization. Gullberg
(2016) and Molné (2021) are solving a similar problem with ¢(#;) = 0|44/, which leads to a
problem on the form

T
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0

Qualitatively, in these cases and probably many others involving a nonzero market impact term,
a no-trade region occurs—if the partial derivative of the objective with respect to the position is
under some threshold in magnitude, no trading is optimal, and otherwise the size of the optimal
trade impulse is a function of said derivative. Thus, a problem occurs in which the partial
derivative is needed for determining the no-trade region, and the no-trade region is needed for
the partial derivative. Molno (2021) investigates solving this using policy iteration methods used
in e.g. reinforcement learning. One can also think of using Feynman—Kac to obtain a backward
SDE of which some functional equals our objective, which we can simulate. Various other
approaches not suffering from the curse of dimensionality, as e.g. a finite difference method
has, are possible.

2 Comments

2.1 Expected results

If successful, the project will result in a deeper understanding of how one can trade based on
signals which are too rapidly changing. Being at least in parts coupled with market impact
models, it will also increase our knowledge of those and how those affect one’s optimal trading
trajectory. The project is flexible in the sense that one can start simple and gradually add more
advanced market impact and signal decay modeling. Although the methods used in the project
may not necessarily be practically useful to a real intraday model, they may inspire certain
simplified variants to be used.

2.2 Methodology and technical prerequisites

The project involves a fair amount of theoretical exercise, but also some numerical work (e.g.
using PyTorch or other automatic differentiation tools).

2.3 Preferred student profile

A theoretically interested and skilled student, who also has some interest in understanding the
mechanisms behind market impact as well as is sufficiently skilled in programming.
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